
Current Practices Scenario

ESHMC Meeting 8-9 March 2007

B. Contor

Keep our eyes upon the donut...

What is the donut?

CORRECT AVERAGE STRESS

Why is this the donut?

Clink, this isn't a fair comparison. The simulators all have German instruments; our guys will be at a disadvantage in the flight tests.

We already *know* the German pilots are superior.

The purpose of science is simply to demonstrate this!

Outline of Proposed Scenario

- Title: Current Practices Scenario
- Purpose:

Predict effect on discharges, gains and heads if current practices & average conditions were to prevail

 Based on current conceptual model & ESPAM 1.1 methods

- Both an end point ("where would we wind up") and trajectory ("how fast would we get there")
 - Implies transient run
 - Transient requires starting heads
 - make sure the trajectory starts from where we are now
 - starting heads implicitly include the effects of all past stresses in the aquifer

- Proposal for starting heads for SCENARIO
 - use short model run to build starting heads as of 1 April 2007
 - starting heads for the short run from end of calibration period (implicitly includes all prior stresses)
 - recharge for short run is synthetic blend of actual data and estimates
 - compare to available measured data
 - not an effort to fine-tune
 - looking for blunders

Note: Q = f(heads, parameters)

For a given set of parameters, if *heads* are correct, Q will be as correct as it can be.

Input Data

- Scenario requires input data (water budget)
 - propose extracting input data from calibration data set
 - keep our eyes upon the donut

CORRECT AVERAGE STRESS

CORRECT ENDPOINT

Proposed Candidate Pool for Data

- 1992 2001 well terms
 - don't use earlier years 'cause practices were different
 - don't use later years 'cause data are partially synthetic and errors or blunders will propagate to end result
 - no adjustments too much danger of blunders or errors and no way to detect them
- Select combination(s) of years from this pool

Index

- We need an index to guide selection
 - keep our eyes upon the donut

CORRECT AVERAGE STRESS

CORRECT ENDPOINT

- We need an index to guide selection
 - For a given data year, index needs to reflect that year's hydrologic condition
 - trib underflow
 - precip
 - non-irrigated recharge
 - diversions on systems w/o storage
 - ET
 - It also needs to reflect the impact of storage on human decisions
 - diversions on systems with storage = a BIG chunk of total recharge
 - BOTH are important; IWRRI proposes using two indices & satisfying BOTH

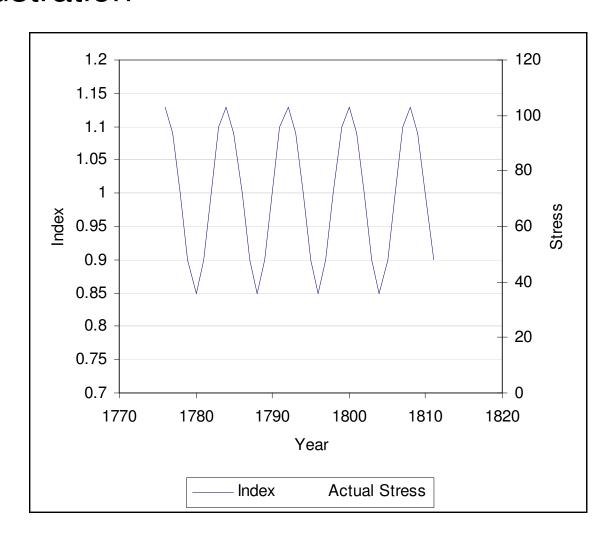
- Current hydrologic condition
 - Shouldn't be too hard

- Human/storage interaction
 - This is a little tougher; put on our thinking caps

- Human/storage interaction
 - We want our index to guide us to years that reflect current decision processes with selected hydrologic conditions
 - Index = indicator of hydrologic character
 - The index has to be time constant
 - This means that a year with a certain hydrologic character would have the same index value, whether it occurred in the 20s, 30s, 80s or 90s
 - This means that the index has to be free from any influence that would have changed over time (i.e. free from any human management component)

- Proposed indices to guide selection
 - Current hydrologic condition
 - natural flow at Heise during irrigation season
 - Storage influences on human decisions
 - natural flow at Heise during the previous winter
 - BOTH are important; IWRRI proposes satisfying BOTH indices

Use of Indices

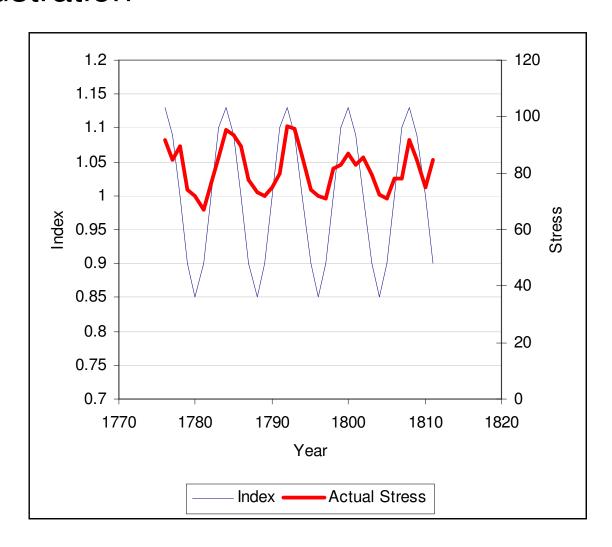

- Use of indices to guide selection
 - keep our eyes upon the donut

CORRECT AVERAGE STRESS

CORRECT ENDPOINT

- Use of indices to obtain average stress
 - Try to get average index ~ 1.0
 - Think about autocorrelation
 - does human response to a "normal" year depend on what the last few years have been like?
 - i.e. what if stress = f(this year, last year, five years ago)?
 - what if index (this year) ~ 1.0 but index (last year, five years ago) >> 1.0 ?
 - This is a "correct average" concern of autocorrelation

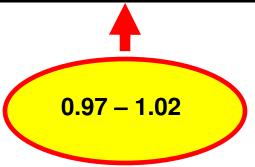
Illustration



Stress = f(current & past indices & random number) ²¹

Which is Best?

Year	Index	Year	Index	Year	Index	Year	Index
1786	1	1791	1.1	1783	1.1	1807	1.1
1786	1	1792	1.13	1792	1.13	1800	1.13
1786	1	1793	1.09	1785	1.09	1801	1.09
1786	1	1794	1	1786	1	1790	1
1804	0.85	1795	0.9	1797	0.9	1781	0.9
1808	1.13	1796	0.85	1788	0.85	1804	0.85
		1797	0.9	1797	0.9	1781	0.9
		1798	1	1786	1	1790	1
avg index	0.997	avg index	0.996	avg index	0.996	avg index	0.996


Illustration

Stress = 75 * (0.50 index_{yr} + 0.35 index_{yr-1} + 0.15 + index_{yr-2} + random) 23

Year	Index	Year	Index	Year	Index	Year	Index
1786	1	1791	1.1	1783	1.1	1807	1.1
1786	1	1792	1.13	1792	1.13	1800	1.13
1786	1	1793	1.09	1785	1.09	1801	1.09
1786	1	1794	1	1786	1	1790	1
1804	0.85	1795	0.9	1797	0.9	1781	0.9
1808	1.13	1796	0.85	1788	0.85	1804	0.85
		1797	0.9	1797	0.9	1781	0.9
		1798	1	1786	1	1790	1
avg index	0.997	avg index	0.996	avg index	0.996	avg index	0.996
avg stress	1.07		1.01		1.03		0.93

Year	Index	Year	Index	Year	Index	Year	Index
1786	1	1791	1.1	1783	1.1	1807	1.1
1786	1	1792	1.13	1792	1.13	1800	1.13
1786	1	1793	1.09	1785	1.09	1801	1.09
1786	1	1794	1	1786	1	1790	1
1804	0.85	1795	0.9	1797	0.9	1781	0.9
1808	1.13	1796	0.85	1788	0.85	1804	0.85
		1797	0.9	1797	0.9	1781	0.9
		1798	1	1786	1	1790	1
avg index	0.997	avg index	0.996	avg index	0.996	avg index	0.996
avg stress	1.07		1.01		1.03		0.93

Proposed Criteria:

- Avoid "over-representing" a single year
- Avoid "over-representing" extreme years
- Whenever possible keep years in natural order
- If necessary, add or subtract a year or two to get average index ~ 1.0
- Other things being equal, take a later year in preference to an earlier year

Proposed Criteria:

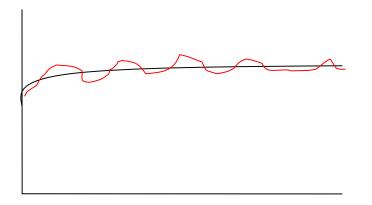
- Both indices are important
 - try to satisfy both; (1.02, 0.98) is better than (1.04,1.00)
 - try to balance about 1.0; (1.02, 0.98) is betterthan (1.02, 1.02) or (0.98,0.98)

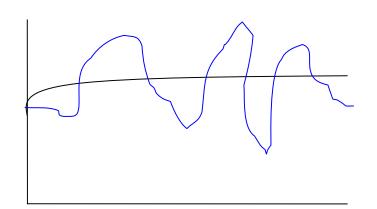
Using the Selected Data

Using selected data:

- Keep our eyes upon the donut
 - END POINT
 - Trajectory
 - Variability
 - Uncertainty

- END POINT

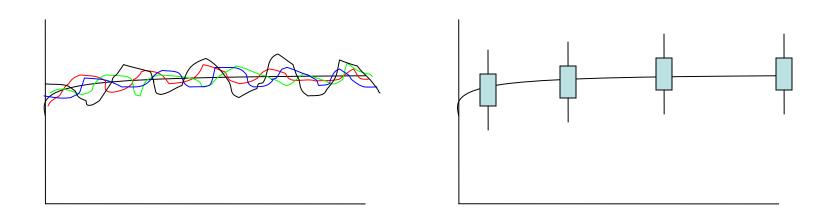

End point is lousy → Drastic adjustments are needed


End point is OK → We're experiencing an acute event

- Present a meaningful discussion of trajectory

Year 10	20%	96%
Year 50	25%	99%
Year 100	30%	99.9%
Year 150	100%	100%

Illustrate variability


Address Uncertainty

- Uncertainty in model representation
 - parameters
 - conceptual model
- Uncertainty in scenario input data
- Uncertainty in future
 - human practices
 - climate

Variability & Methods

Variability & Methods

- "Multiple Traces" of variable stress representation
- "Constant-stress" (aka "Single Trace")
 representation w/ indication of variability from
 historical obs. Stress is average of selected years.

- Variability: "Multiple Traces" method
 - If actual range is 0 to 1.0 but "candidate pool" is 0.2 to 0.8, no multiple trace rendition will be able to illustrate full variability
 - Autocorrelation may affect magnitude of extreme events
 - Variability characteristics of synthetic series will be time-constant

- Variability: "Constant Stress" method
 - Arguably, historical records are better than a synthetic series
 - If historical data suggest changes in the nature of variability, our product will call this to users' attention
 - While we would still deal with autocorrelation effects on average magnitude, constant-stress method is immune from autocorrelation effects on variability

Uncertainty & Constant-Stress

Address Uncertainty

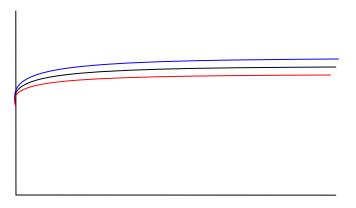
- Uncertainty in *model representation*
 - parameters
 - conceptual model

Beyond our scope

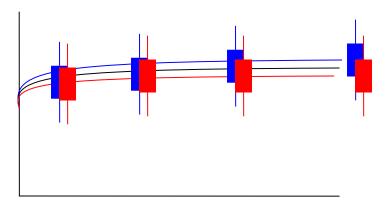
- Uncertainty in scenario input data
- Uncertainty in future
 - human practices
 - climate

Beyond our scope Uncertainty: "Constant Stress Method"

Group 1: 1775 to 1810 with 1809 omitted and 1798 included three times.


Summertime index = 1.02 Wintertime index = 0.98

Group 2: 1776 through 1792
Summertime index = 0.97 Wintertime index = 1.03


Group 3: 1800 through 1810 with 1802 repeated once Summertime index 1.01 Wintertime index 0.99

 We would run all three simulations to bound the uncertainty in the data series

Combining uncertainty and variability

Step 1: Three "best candidate" series represent data uncertainty

Step 2: Use historical record to represent potential variability

Summary

- Title: Current Practices Scenario
- Purpose:

Predict effect on discharges, gains and heads if current practices & average conditions prevail

 Based on current conceptual model & ESPAM 1.1 methods

- Both an end point ("where do we wind up") and trajectory ("how fast do we get there")
 - transient simulation
 - get starting heads from short model run w/ synthetic data
 - synthetic data set with "real" components
 - compare with observations to check for blunders
 - short run uses ending heads from calibration

- Scenario itself will use data extracted from calibration period data
 - candidate pool 1992 2001
 - select based on summertime Heise index and wintertime Heise index (natural flow)
 - satisfy both criteria
 - detailed rules for selection
 - avoid bias

- Selected data (three best groups) will be used to make three best average stress well terms
- Three constant-stress simulations to help bound uncertainty in synthetic scenario data
 - Model uncertainty not addressed
 - Future uncertainty not addressed

 Hydrologic variability will be extracted from historical record and superimposed on constant-stress results

- Results of scenario
 - End point: What is the implied equilibrium of today's practices (where would we wind up if nothing changed)?
 - Trajectory: How fast would we get there?
 - Data uncertainty: How fuzzy is our knowledge of this endpoint?
 - Hydrologic variability: Along the way, how much "swing" can we expect?

Presentation of Results

Let's do the work first

END

